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The understanding and modeling of the relationships between
the structure of a molecule and its biological activity are the
central themes of medicinal chemistry. Clearly, the biological
activity of a compound cannot directly be calculated by first
principles from the molecular structure. In this situation, an
indirect approach has to be taken to find a relationship between
the molecular structure of a compound and its biological activity
(Figure 1). First, the structure of a molecule has to be represented
by structure descriptors. Then these structure descriptors are used
for modeling the biological activity. This second step asks for
a set of molecules and their associated biological activities in
order to apply inductive learning methods such as statistical or
pattern recognition methods or artificial neural networks to
establish a relationship between the structure descriptors and
the biological activity.

In this article we will concentrate on the first step, the
representation of molecules. In the past few decades a wide
variety of methods have been developed to derive structure
descriptors for a molecule.1-3 We propose here an ordering
scheme that allows one to determine the level of sophistication
in structure representation. In this endeavor we will compare
molecules with humans, both being three-dimensional objects
having surfaces, having different types of surfaces, having chiral
parts, and being flexible (Figure 2). This comparison will allow
us to decide what results we can expect from a certain type of
molecular structure representation and thus give guidelines on
which structure representation to choose for a certain problem
at hand.

Before discussion of various structure representations, another
task has to be addressed. The objective of using data analysis

methods for relating structure descriptors with activities requires
that each structure of the data set has to be represented by the
same number of descriptors. This becomes already clear with
one of the simplest data analysis methods, a multilinear
regression analysis (MLRA) relating a set of independent
variables (descriptors)xij for a moleculei with a propertyyi

(i.e., the activity) of this molecule:

In this case, it has to be decided from the very beginning how
many descriptors,n, will be used to represent each molecule.
For a congeneric set of molecules having the same skeleton/
scaffold, this might be an easy task by choosing descriptors for
the various substituents on the skeleton as was used in linear
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Figure 1. Construction of structure-property relationships.

Figure 2. Molecules have shape and surfaces.

yi ) c0 + c1xi1 + c2xi2 + ...cnxin (1)
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free energy models such as the Hammett or Taft type of
approaches. However, this requirement that all molecules have
to be represented by the same number of descriptors also applies
to data sets that comprise quite diverse molecules of different
sizes, having different number of atoms. And it also applies to
any data analysis method not only to MLRA but to any pattern
recognition method or artificial neural network. We will address
this point of requiring a fixed-length representation for all
molecules of a data set in the following sections.

Fingerprints

Methods have been developed to search molecules for the
presence or absence of certain predefined functional groups and
other substructures and to compress this information into a bit
string of given length. Such a representation is called a
fingerprint of a molecular structure.4 Initially, fingerprints were
developed for rapidly searching databases of structures for
determining the presence or absence of certain chemical
structures (Figure 3). The same purpose is fulfilled by hash-
codes5 that are constructed in a way similar to fingerprints.

With the advent of combinatorial chemistry and thus the need
to represent large sets of compounds, fingerprints were offered
for the representation of chemical structures to model their
biological activity. Figure 3 clearly indicates that fingerprints
may be quite appropriate for identifying a molecule; however,
they are hopelessly inadequate for representing the finer details
of a molecule.

Fragment Codes

Whereas the presence or absence of certain substructures or
fragments is compressed with fingerprints into a rather concise
representation that does not allow any more the identification
of the individual fragments, fragment codes explicitly retain the
information about the presence or absence of a certain sub-
structure. In this case, a predefined set of fragments is used
and each fragment corresponds to a certain position of a bit
string having a length equal to the number of fragments in the
predefined set. In some cases, vectors of integers are used, thus
allowing us not only to report the presence of a substructure
but also to count how often a substructure is present. Fragment
codes have been used for modeling a variety of properties such
as predicting biological activities or simulating infrared spectra.

Moreover, fragment codes are often used for defining the
similarity of structures by calculating the Tanimoto indexI from
the numbernA of substructures present in structure A but not
contained in structure B, the numbernB of substructures present
in structure B but absent in structure A, and the numbernC of
substructures in common between structure A and structure B:

However, it has to be realized that fragment codes and lists of
fragments only report the presence or absence of certain

fragments and do not give information on how these fragments
are arranged in a given molecule, what the distance between
these substructures is. Thus, the two structures shown in Fig-
ure 4 have a high similarity based on the Tanimoto index,
although clearly for many types of problems, such as questions
on how to synthesize them, these two molecules have to be
considered to be rather different.

The comparison of a fragment code with the corresponding
level of information on a human being shows the strength and
limitations of a fragment code (Figure 5). Yes, a fragment code
can tell us whether a certain substructure (the skull) is present
in a molecule, but it gives no information on the distance
between two substructures (the skull and the foot). Clearly, such
information is essential when modeling the biological activity
of a compound because the distance between two atoms will
be important for deciding whether a ligand can bind to one or
two sites of the receptor.

Topological Distances and Atomic Properties

Thus, let us consider in our structure representation the
distance between the atoms of a molecule. In the simplest case,
the topological distance can be taken, which corresponds to the
number of bonds between two atoms. Clearly, it is important
to consider not only the distances between two atoms but also
the identity of these atoms, in particular their physicochemical
properties such as partial charges or hydrogen-bonding poten-
tials.

One approach to simultaneously considering atomic properties
and distances between atoms is topological autocorrelation as
expressed in the following equation:6,7

In this equation,ai and aj are properties of atomsi and j,
respectively, anddij is the topological distance between atoms
i andj. δ is having a value of 1 when the running variable, the
distanced, is equal to the distancedij between the two atoms;
otherwise, its value is zero. The summation is made over all
combinations of atomsi and j.

As atomic properties (ai), any property of an atom such as
atomic number or its mass can be taken. However, to represent
the electronic properties of atoms, we have developed methods
for calculating such important physicochemical effects such as
partial charges8,9 and inductive,10 resonance,9 or polarizability

Figure 3. Fingerprint representation of a chemical structure.

I )
nC

nA + nB + nC
(2)

Figure 4. Two structures with a high Tanimoto similarity index.

Figure 5. Fragmentation of chemical structures.

Atop(d) ) ∑
j)i+1

N

∑
i)1

N-1

aiaj δ(d-dij) (3)
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effects11 that are based on simple and rapid algorithms that allow
the processing of large sets of molecules comprising hundreds
of thousands or even millions of structures.

The merits of topological autocorrelation of electronic proper-
ties of atoms have been shown in studies distinguishing
molecules having different biological activities7 for finding new
lead structures, for lead hopping, and for the comparison of
libraries of compounds. This kind of structure representation
by topological autocorrelation is able to perceive the similarity
of the two structures contained in Figure 6, both being dopamine
agonists.7 With all its successes it should not be overlooked
that topological autocorrelation only considers the constitu-
tion of a molecule, its set of atoms, and how they are bonded
(Figure 7).

3D Structure Representation

Molecules are three-dimensional objects, and any in-depth
representation of a molecule should take into account its 3D
structure. The first step is then to gather 3D information on the
structures of molecules. Presently, for about 250 000 organic
and organometallic molecules their 3D structures have been
determined by X-ray diffraction or NMR studies and have been
stored in the Cambridge Structure Database (CSD). Large as
this number might seem at first, it is minute in comparison with
the number of known compounds, which exceeds 30 million.
Thus, we know the 3D structures of less than 1% of the known
compounds. The question is then, can we learn enough rules
from the known 3D structure of organic compounds that would
allow us to predict the 3D structure of the other 99% of organic
compounds? The answer is clearly yes. Several automatic 3D
structure generators have been developed that can generate a
3D molecular model from information on the constitution of a
molecule only.12 In our group, the 3D structure generator
CORINA has been developed.13 CORINA has incorporated data
and rules on the construction principles of organic compounds
that allows the generation of a 3D model for basically any
organic molecule.12,14 Thus, the publicly available database of
the National Cancer Institute, containing 250 251 structures
could automatically be converted into 3D molecular models in
a single run requiring 1.1 h on a PC (1.6 GHz, Linux) and
providing 3D models for 99.4% (248 795) of the structures.
CORINA produces a single low-energy conformation of a

molecule. Comparison with experimental 3D structures from
X-ray structure determination has shown the high quality of
the 3D structures.15

With automatic 3D structure generators being able to produce
3D molecular models for basically any organic molecule, the
question is then, “How can the 3D structures be represented
for data analysis methods requiring the same number of
descriptors irrespective of the size, the number of atoms in a
molecule?” Clearly, the Cartesian coordinates cannot be used
because then the number of descriptors would be directly related
to the numberN of atoms in a molecule requiring 3N
coordinates. A fixed-length representation of the 3D structure
can again be obtained by autocorrelation in an analogous manner
as shown by eq 3 with the distancedij being binned into ranges.

As an alternative, radial distribution functions (RDF) origi-
nating in powder X-ray diffraction or electron diffraction studies
for the representation of the 3D structure of molecules can be
used as shown in the following equation:16

In eq 4 the radial distribution functiong(r) is obtained from
the product of the propertiesai andaj of atomsi and j and by
considering the distancesrij between those two atoms. The
parameterb is the so-called temperature factor, “fuzzifying” the
distances. The value ofr is a distance and is the running variable
of the function.

Figure 8 shows the RDF of the 3D structure of the given
molecule. The peak at 1.5 Å results from all bonding distances
involving C-C, C-O, and C-N bonds. The peak at 1.82 Å is
caused by the longer C-S distance. Next come the 1,3 distances
involving two bonds, etc. The last peak in Figure 8 results from
the largest distance in this molecule between two oxygen atoms.
To obtain a fixed-length representation, the function is only
calculated at discrete values ofr and only up to a certain
distance, e.g., every 0.1 Å up to a value of 12.8 Å resulting in
a vector of 128 values.

An RDF code has successfully been used for the simulation
of infrared spectra because it encodes the entire 3D structure
of a molecule and thus can model the vibrations of an entire
molecule, both individual bonds and the entire skeleton.16-18

RDF codes have a bright future in studies of the effects of the
3D structure on biological activity because they have a quite
clear physicochemical interpretation. Thus, recently an RDF
code has been used to analyze the NF-κB binding affinity of a
series of sesquiterpene lactones.19 Valuable as 3D structure codes
are for the representation of molecules in modeling their

Figure 6. Two dopamine agonists having different number of atoms:
48 atoms for structure on the left and 27 atoms for structure on the
right.

Figure 7. Topology of molecules as expressed by the relative
arrangement of the atoms in a molecule.

Figure 8. Radial distribution function of a 3D molecular structure.

g(r) ) ∑
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biological activity, it should not be forgotten that we have only
represented the skeleton of molecules (Figure 9).

Molecular Surface Properties

Molecules, however, have shape and have surfaces (see Figure
2). They interact with their environment through their surfaces
and the properties on their surfaces (Figure 10). Again, we are
faced with the task of representing the properties on the surfaces
of a series of molecules with a fixed-length vector, with the
same number of descriptors, irrespective of the size of the
molecule. And again, autocorrelation can be used:

In this case, propertiesp of points i and j taken from the
molecular surface with a certain sampling density will be used
and the distanced will be binned between a lowerdl and an
upper bounddu, dl e d < du.

It has been shown that through autocorrelation of the
molecular electrostatic potential a representation is obtained that
is very well suited to modeling the binding affinity of a series
of 31 steroids to the corticosteroid binding globuline receptor.20

Autocorrelation of the molecular electrostatic potential has been
used to define the similarity and diversity of combinatorial
libraries consisting of amino acids attached to xanthene, cubane,
and adamantane scaffolds.21

In another study, the representation of three different surface
properties, molecular electrostatic potential, hydrophobicity
potential, and hydrogen-bonding potential, by autocorrelation
and three different fingerprint representations have been com-
pared in their ability in separating hits from nonhits in a
combinatorial library of hydantoins.22 As it turned out, on the
basis of autocorrelation of the hydrogen-bonding potential, a
filter could be developed that was able to select 96% of the
hits from a test set and allowed one to discard 92% of the
nonhits.

In another attempt to represent molecular surface properties,
two-dimensional maps of molecular surfaces have been pro-
duced by a nonlinear mapping procedure utilizing a self-
organizing neural network.23 In this approach, the Cartesian
coordinates of points sampled from a molecular surface are used

to train a self-organizing (Kohonen) neural network. The
mapping of the surface points into the neurons of the network
can be visualized by any property these points had on the
surface, e.g., the molecular electrostatic potential (MEP). Figure
10 shows the MEP of the surface of a molecule. Because this
is a linear projection, only part of the surface can be shown.
Figure 11, on the other hand, shows the self-organizing map of
the entire MEP, as this method is a nonlinear projection method
being able to map the entire molecular surface into a single
plane. It has been shown that such maps of the MEP can be
used to distinguish compounds that bind to the muscarinic
receptor from those that bind to the nicotinic receptor.24

Chirality

All proteins are chiral, and therefore, many receptors and
enzymes respond differently to enantiomers. Correspondingly,
about 70% of all drugs are chiral. There is a strong tendency in
the pharmaceutical industry to bring pure enantiomers into the
market. Any more detailed modeling of the effects of structure
on biological activity therefore has to represent chirality (Figure
12). In distance space, enantiomers cannot be distinguished.
Thus, enantiomers will obtain the same 3D autocorrelation
vectors or RDF codes. However, we have developed both a
conformation-dependent and a conformation-independent chiral-
ity code that is based on the 3D structure of a molecule and
that considers all the atoms of the ligands around a chiral center
or chiral axis (Figure 13).25,26

It has been shown that such chirality codes can successfully
be used to predict the major enantiomer in an enantioselective
reaction caused by a chiral catalyst.25 Furthermore, chirality
codes were used to predict the first eluted enantiomer in
enantioselective chromatography.26 Thus, the door is open for
using chirality codes in modeling the biological activity of
different enantiomers.

Figure 9. Molecular 3D skeleton.

Figure 10. Electrostatic potential of a molecular surface.

ACsurf(d) ) ∑
j)i+1

N

∑
i)1

N-1

pipj δ(d-dij) (5)

Figure 11. A 2D map of a molecular electrostatic potential.

Figure 12. Chirality of molecules.

Figure 13. Chirality code of a molecular structure, derived from all
combinations of the atoms of the four ligands.
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Molecular Flexibility

All structure representations mentioned until now have
assumed molecules to be rigid. However, most molecules are
quite flexible having single bonds that allow rotation yielding
different torsional angles and thus providing different conforma-
tions (Figure 14). Then the quest for the biologically active
conformation becomes of central importance. Lack of a
knowledge of the biologically active conformation is also the
reason, in quite a few situations, that topological or 2D
descriptors outperform 3D descriptors in modeling biological
activity. Clearly, molecules are three-dimensional, and thus, 3D
descriptors should perform better than 2D descriptors. However,
as soon as the 3D structure of a molecule is considered, the
problem of finding the right conformation becomes imminent.

The generation of conformations is an easy task; even the
generation of low-energy conformations is not that difficult.
However, because of the large number of potential settings for
torsional angles, one might soon end up with too many
conformations to handle. The question is then how to generate
not too many conformations while maintaining the biologically
active conformation. Two approaches are conceivable: (1) the
constrained generation of conformations, constrained so as not
to generate too many conformations; (2) a direct search for the
biologically active conformation. Attempts along both lines will
be presented here.

An analysis of the distribution of torsional angles around
single bonds in X-ray structures showed clear preferences and
provided a statistical distribution of the incidences of torsional
angles.27 Such distributions are taken by the program ROTATE
to preferentially generate those conformations that have a high
incidence in the Cambridge Crystallographic Structure Database
(CSD). In addition, conformations with small deviations in
torsional angles are collected into families and each family is
represented by one conformation only. This allows the genera-
tion of a limited but quite diverse set of conformations.28,29

These sets of conformations also contain a conformation that
is quite close to the receptor-bound, biologically active con-
formation (Figure 15).

The approach of trying to directly access the bioactive
conformation rests on the idea that a set of ligands binding to
the same receptor must have common spatial features. Thus, a
search for the three dimensional maximum common substructure
(3D-MCSS) of a set of ligands is initiated by superimposing
the 3D molecular models of these ligands to maximize the
number of atoms of the different ligands that can be superim-

posed. In this process, rotations around single bonds of the
ligands are allowed, thus introducing conformational flexibility.
To manage this optimization problem, a genetic algorithm such
as a stochastic optimizer is used.30 Figure 16 shows the
superimposition of three nicotinic allosterically potentiating
ligands emphasizing their 3D structural similarity.

Summary and Conclusions

The comparison of a molecule with a human being allows
one to assess the level of structure representation needed (and
chosen) for solving the various problems encountered in drug
design and development. Here, we have largely concentrated
on the geometric aspects of structure representation. However,
we want to emphasize that the proper consideration of physi-
cochemical effects exerted by the atoms in a molecule is of
equal importance.2,31 The equations presented here allow their
transparent incorporation into the various structure coding
methods, starting from the constitution through the 3D structure
to molecular surface properties (Figure 17). These methods
combining molecular geometry of increasing resolutions with
physicochemical properties have been integrated into the
package ADRIANA.Code.32

Although the discussion here has centered around problems
encountered in drug design, the methods for the representation
of molecular structures can be used in all areas of chemistry.
Because of the need for the prediction of a wide range of
physical, chemical, or biological activities of compounds, we
will see in the future increasing use of structure coding methods
in many fields of chemistry.

Clearly, despite the enormous progress that has been made
in recent years in the area of molecular structure representation,
there is still a lot of space for further improvement. Particularly,
the quest for the biologically active conformation is still a
challenging problem being open for new ideas and approaches.
It is our belief that the development of new structure representa-
tions should rest on clearly defined levels of resolution of the
geometry of molecules and on considerations of a variety of
physicochemical effects.

Figure 14. Flexibility of molecules.

Figure 15. Superimposition of the receptor-bound structure of the HIV
protease inhibitor: VX-478 with a conformation generated by RO-
TATE.

Figure 16. Superimposition by GAMMA of the three nicotinic
allosterically potentiating ligands galanthamine, codeine, and physos-
tigmine.

Figure 17. Hierarchy of structure representation: a 2D model, a 3D
model, and a molecular surface.
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